Honeywell

SLATE

Analog I/O Module

R8001U3001

INSTALLATION INSTRUCTIONS

Scan for more information

Application

SLATE[™] brings configurable safety and programmable logic together into one single platform. The platform can easily be customized for almost any requirement or application–offering virtually limitless development opportunities with far less complexity.

The R8001U3001 SLATE Analog I/O module provides analog input and output capability for all combustion applications.

Features

- 4 analog cells per module
- Multiple combination of analog functionality for each cell
- Supported sensors include voltage, current, PWM, tach, RTD, NTC, and thermocouple

Specifications

Electrical Ratings:

See Table 3-Table 7

Environmental Ratings

Ambient Temperature: Operating: -20°F to +150°F (-29°C to +66°C). Shipping: -40°F to +150°F (-40°C to +66°C).

Humidity: 95% continuous, noncondensing. Vibration: 0.5G environment

Dimensions: Refer to Fig. 1.

Weight: 2 lb 1 oz (0.94 Kg)

Approvals

Underwriters Laboratories Inc. Listed, File: MP268 IRI Acceptable Federal Communications Commission: Part 15, Class A Must be mounted inside a grounded metal enclosure.

Mounting

DIN Rail (See Fig. 2)

Required Components

R8001A1001 SLATE Base Controller R8001S9001 SLATE Sub-Base Module

Fig. 1. Mounting dimensions of analog I/O module in in. (mm).

Principal Technical Features

The R8001D4001 analog I/O module provides analog input and output capability for all combustion applications.

LED Array

There are four LEDs on the front of the analog I/O module that provide quick identification of system status and problems. This status is broadcast to other modules on the platform bus in case they are affected by the inoperable module(s). There are also four banks of LEDs for the analog cells. See Table 1 for descriptions.

LED	Color	Description				
(') Power	No light	System does not have power				
0	Green	System has power				
CPU	Red	No wire sheet or problem with the wire sheet				
	Green	Running				
Fault	Red	Fault				
	No light	Running				

Table 1. LED Descriptions.

LED Display

The SLATE system modules have a seven-segment, threeposition LED display used for indicating the module number of the SLATE system. The LED colors indicate the terminal state as shown in Table 2.

Color	Description			
Green	Terminal is on			
Red	Fault			
No light	Not in use			

Table 2. Terminal LED Meanings.

Select and Reset Buttons

The SLATE system modules have a Select and Reset buttons located on the front of the module and beneath the segment display. The Reset button is used to clear a lockout and reset the module. The Select button is used to scroll through the segment display information.

Installation

Fire or Explosion Hazard Can cause severe injury, death, or property damage.

Verification of safety requirements must be performed each time a control is installed on a burner to prevent possible hazardous burner operation.

When Installing This Product

- **1.** Read these instructions carefully. Failure to follow them could damage the product or cause a hazardous condition.
- **2.** Check the ratings given in the instructions and on the product to make sure the product is suitable for your application.
- **3.** After installation is complete, check out the product operation as provided in these instructions.
- **4.** The SLATE module must be mounted in an electrical enclosure with adequate clearance for servicing, installation and removal of modules.

Electrical Shock Hazard.

Can cause severe injury, death or equipment damage.

1. Disconnect the power supply before beginning installation to prevent electrical shock and equipment damage. More than one power supply disconnect can be involved.

Fig. 2. Installing the Analog I/O Module on the Sub-Base Module.

- 2. Wiring must comply with all applicable codes, ordinances and regulations.
- 3. Wiring must comply with NEC Class 1 (Line Voltage) wiring.

IMPORTANT

1. This equipment generates, uses and can radiate radiofrequency energy and, if not installed and used in accordance with these instructions, may cause interference for radio communications. It has been tested and found to comply with the limits of a Class A computing device of part 15 of FCC rules, which are designed to provide reasonable protection against such interference when operated in a commercial environment. Operation of this equipment in a residential area may cause interference; in which case, the user, at their own expense, may be required to take whatever measures are required to correct this interference.

- 2. This digital apparatus does not exceed the Class A limits for radio noise, set out in the Radio Interfeence Regulations of the Canadian Department of Communications.
- 3. Cable shield must be terminated to ground at both ends. If shielded cable is NOT used, use three-wire twisted cable.

Wiring

Electrical Shock Hazard. Can cause severe injury, death, or equipment damage.

Disconnect the power supply from the main disconnect before beginning installation to prevent electrical shock and equipment damage. More than one disconnect can be required.

Fig. 3. Wiring diagram for Analog I/O Module.

Terminal	Description	Rating
1	Cell A (T1)	See Tables Table 4-Table 7 for configuration options
2	Cell A (T2)	See Tables Table 4-Table 7 for configuration options
3	Cell A (T3)	See Tables Table 4-Table 7 for configuration options
4	Cell A (T4)	See Tables Table 4-Table 7 for configuration options
5	Cell B (T5)	See Tables Table 4-Table 7 for configuration options
6	Cell B (T6)	See Tables Table 4-Table 7 for configuration options
7	Cell B (T7)	See Tables Table 4-Table 7 for configuration options
8	Cell B (T8)	See Tables Table 4-Table 7 for configuration options
9	Cell C (T9)	See Tables Table 4-Table 7 for configuration options
10	Cell C (T10)	See Tables Table 4-Table 7 for configuration options
11	Cell C (T11)	See Tables Table 4-Table 7 for configuration options
12	Cell C (T12)	See Tables Table 4-Table 7 for configuration options
13	Cell D (T13)	See Tables Table 4-Table 7 for configuration options
14	Cell D (T14)	See Tables Table 4-Table 7 for configuration options
15	Cell D (T15)	See Tables Table 4-Table 7 for configuration options
16	Cell D (T16)	See Tables Table 4-Table 7 for configuration options
17	Unused	
18	Unused	
19	Unused	
20	Unused	
21	Unused	
22	Unused	

Table 3. Terminal Ratings.

Specifications based on worst case over ambient temperatures.

Basic Functions			Min	Typical	Max	Units			
T1	Voltage	In	Range	0.0	-	15.0	VDC		
			Resolution	-	2.43	-	mV DC		
			Null	-25.0	-	25.0	mV DC		
			Accuracy	-25.0	-	25.0	mV DC	Whichever is	
				-1.0	-	1.0	%	greater	
		Out	Range	0.0	-	15.0	VDC		
			Resolution	-	4.0	-	mV DC		
			Null	100.0	-	100.0	mV DC		
			Accuracy	-50.0	-	50.0	mV DC	Whichever is	
				-1.5	-	1.5	%	greater	
	Current	In	Range	0.0	-	25.0	mA DC	а	
			Resolution	-	7.4	-	uA DC		
			Null	-0.5	-	0.5	mA DC		
			Accuracy	-1.5	-	1.5	%	0 to 25 mA	
		Out ^b	Range	0.0	-	25.0	mA DC	Max Load = 500 Ω	
			Resolution	-	4.0	-	mA Ω		
			Null	-0.5	-	0.5	mA DC		
			Accuracy	-300.0	-	300.0	uA DC	0 to 25 mA	
				-50.0	-	50.0	uA DC	4 to 20 mA	
T2	T2 Voltage I		Amplitude	0.0	-	15.0	VDC		
			Trip Point	-	3.0	-	VDC	Comparator	
			Hysteresis	-	0.25	-	VDC	Only	
			Resolution	-	0.37	-	mV DC		
			Null	-25.0	-	25.0	mV DC		
			Accuracy	-25.0	-	25.0	mV DC		
ТЗ	Voltage	e In	Range	0.0	-	15.0	VDC		
			Resolution	-	0.37	-	mV DC		
		Null	-25.0	-	25.0	mV DC			
			Accuracy	-25.0	-	25.0	mV DC		
	Current		Range	0.2	-	25.0	mA DC		
			Resolution	-	3.7	-	uA DC		
			Null	-0.5	-	0.5	mA DC		
		Accuracy	-1.5	-	1.5	%	0 to 25 mA		

^a T1 input terminal is held at constant 2.5VDC over allowable current range.

 $^{\rm b}$ Accuracy specification given is for 100 Ω load. Resolution specification can be converted to mA by dividing out load.

Table 4. Specifications for Basic Cell Functions.

	Comple	x Functions	Min	Typical	Max	Units			
	Thermocouple								
T2	Type J	Range	-200.0	-	1025.0	°C			
&		Resolution	-	0.1	-	°C			
ТЗ		Accuracy	-5.0	-	5.0	°C			
	Type K	Range	-150.0	-	1000.0	°C			
		Resolution	-	0.1	-	°C			
		Accuracy	-5.0	-	5.0	°C			
	RTD								
ТЗ	PT100	Range	-135.0	-	250.0	°C	3 wire, 100 Ω		
&		Resolution	-	0.5	-	°C			
T4		Accuracy	-2.0	-	2.0	°C			
	Туре	Range	-135.0	-	250.0	°C	3 wire, 1000 Ω		
	PT1000	Resolution		0.5		°C			
		Accuracy	-2.0	-	2.0	°C			
	NTC								
ТЗ	Туре	Range	-40.0	-	175.0	°C			
&	10K	Resolution	-	0.1	-	°C			
T4		Accuracy ^a	-2.0	-	2.0	°C	-40 °C to 25 °C		
				-	1.0	°C	25 °C to 125 °C		
			-1.5	-	1.5	%			
				-	3.0	°C	-40 °C to 175 °C		

^a Temperatures refer to sense range.

Table 5. Specifications Cell Complex Functions.

	Frequency Functions	/ PWM	Min	Typical	Max	Units		
	PWM Out							
T1	Amplitude	5.0	-	10.0	VDC	Low output state = 0V		
	Frequency	100.0	-	1000.0	Hz			
	Duty Cycle		2.0	-	98.0	%DC	Allowable output %DC	
	Resolution		-	1.0	-	%		
	Accuracy		-0.5	-	0.5	%DC	10V amplitude	
	Frequency	In						
T2	Amplitude		5.0	10.0	15.0	VDC		
	Range		2	-	1000	Hz		
	Min. "on" pl (low %DC)	Ilse width	-	50.0	-	usec	10V amplitude	
	Min. "off" pl. (high %DC)	Ilse width	-	130.0	-	usec	10V amplitude	
	Duty Cycle	2 – 100 Hz	2.0	-	98.0	%DC	10V amplitude	
		1000 Hz	5.0	-	85.0	%DC	10V amplitude	
	Resolution		-	1	-	Hz		
	Accuracy		-5.0	-	0	%	Whichever is	
			-1	-	0	Hz	greater	
	PWM In							
T2	Amplitude		5.0	10.0	15.0	VDC		
	Frequency		125	-	500	Hz		
	Min. "on" pl (low %DC)	Ilse width	-	50.0	-	usec	10V amplitude	
	Min. "off" pu (high %DC)	Ilse width	-	130.0	-	usec	10V amplitude	
	Duty Cycle	125 – 500 Hz	5.0	-	90.0	%DC	10V amplitude	
	Resolution		-	1.0	-	%DC		
	Accuracy	125 Hz	-1.5	-	1.5	%DC	10V amplitude	
		500 Hz	-7.5	-	7.5	%DC	10V amplitude	

Table 6. Specifications for Cell Frequency Functions.

Configuration Min			Optimum Range for Performance	Max	
Thermocouple J		-50°C		1025°C	±4°C
	Κ	-50°C		1000°C	±4°C
RTD		-135°C		250°C	±2°C
NTC		25°C		125°C	± 1°C
Current Out		4 mA	[[]]	20 mA	± .05 mA
Voltage: In / Out 2 V		2 V		10 V	0.3 %, typical

Table 7. Suggested Sensor Selection Based on Application.

Application	Recommended Wire Size	Recommended Part Numbers
Analog Cell terminals	18 AWG wire insulat- ed for voltages and temperatures for given application.	TTW60C, THW75C, THHN90C

Table 8. Recommended Wire Sizes and Part Numbers.

Recommended Grounding Practices

Use an Earth ground or a signal ground as described below.

Earth ground (Base, Rectification Flame Amp Module, other modules optional)

- 1. Use to provide a connection between the base and the control panel of the equipment. Earth ground must be capable of conducting enough current to blow the breaker in the event of an internal short circuit.
- **2.** Use wide straps or brackets to provide minimum length, maximum surface area ground conductors. If a leadwire is required, use 14 AWG copper wire.
- **3.** Make sure that mechanically tightened joints along the ground path are free of nonconductive coatings and protected against corrosion on mating surfaces.

Signal ground

Note the 18V system ground is not electrically connected to earth ground. Follow local codes and appliance recommendations to determine if this should be connected to earth ground.

Be sure loads do not exceed the terminal ratings. Refer to the labels or terminal ratings in Table 3.

The SLATE system must be mounted in an electrical enclosure. When mounting in an electrical enclosure, provide adequate clearance for servicing, installation and removal of SLATE modules.

The maximum leadwire length is 300 feet to terminal inputs (Control, Running/Lockout Interlock)

For more information on the R8001U3001 and the entire SLATE system please refer to the SLATE User Guide document located on our website at http://combustion.honeywell.com/SLATE

Automation and Control Solutions

Honeywell International Inc. 1985 Douglas Drive North Golden Valley, MN 55422 customer.honeywell.com © U.S. Registered Trademark.
© 2014 Honeywell International Inc.
32-00009-01 M.S. 12-14
Printed in U.S.A.